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Abstract

DNA isamajor and essential identification tool for mass fatality incidents including the hundreds of thousands of victims
of the 2004 Indian Ocean tsunami. Mathematical complications characteristic of this sort of mass fatality include
prevalence of related victims, the many races represented among the victims, and various identification modalities in
tandem with DNA. Four mathematical problems of interest are discussed in this paper. (1) Other quantifiable factors (i.e.
geography) can be formally accounted for by including a likelihood ratio that can be thought of as reducing the “effective
number of victims.” (2) When a victim is found and tentatively identified as V, but then it comes to light that the victim
has a relative W who is also missing, confidence in the identity is depressed. To account for the existence of W,
increment the effective number of victims by the likelihood ratio supporting W as the identity of the victim. (3) When
several apparently related victims are found, their mutual identities should be calculated simultaneously. Compared to
one-at-a-time, serial identifications, this is both logical and may lead to much more confidence in the identities. (4)
Although there may be many different population groups represented among the missing, it is generally sufficient to
consider population statistics for only a few of them in deciding whether to declare an identification.

Keywords: DNA identification, Mass fatality, kinship, tsunami identification

1. Introduction

DNA is unique among identification modalities in lending itself well to mathematical treatment.

The purpose of this paper is to give some mathematical guidance and suggestions for determining identities of victims
in the case of mass disasters similar to the December 2004 tsunami deaths in the Indian Ocean. The general outline of
strategy for DNA-based mass fatality identification is reasonably clear from experience of this and earlier incidents [1,
2,3,4,5]. DNA profiles of victim DNA (“PM” for post-mortem) are compared with reference profiles that come from
relatives (indirect references) and/or from relics such as a toothbrush of the victim (direct reference). A likelihood ratio
comparing appropriate hypotheses may then reasonably be interpreted using a Bayesian model [6] — in other words,
assuming some prior odds — to give posterior odds of correct identification (1). A typical policy is that identification will
be declared provided the posterior odds are high enough that the chance of a misidentification is very small (2).

On the other hand, the discipline of mass identification is not yet mature. Every disaster, particularly a gigantic one, has
unique aspects, and it is already apparent what some of the novel mathematical complications of tsunami identifications
are. The emphasis in this paper is on DNA calculations and a Bayesian approach. Beyond that the only unifying theme
is relevance to the practical problem.

Assume that either through formal computer DNA screening as described previously [5], or via physical clues, tentative
identifications exist.

The first issue is the context within which DNA information is to be interpreted — that is, the prior odds inferred from
other, moderately quantifiable factors, like geography or the victim’s size. Physical location where remains were
recovered was considered only slightly in making World Trade Center identifications, is generally useless in airplane
crashes, and has unfortunately been of little help in the major effort to identify Bosnian war dead because of the chaotic
and deadly history near Srebrenica. The Indian Ocean situation is different.
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One then needs to evaluate: How strongly does the DNA evidence indicate that a given body is that of a particular
missing person X? If relatives of X are also missing the analysis is more complex. Compared to the situation with no
relatives, the identification is weaker if only X’s body is found, but if several related bodies turn up their identities can
reinforce one another, especially if the identification is based on comparison with living relatives rather than direct
references.

Finally, what is the appropriate reference population for calculations? Obviously many races are represented among the
dead, so it is helpful to recognize conditions under which some of those races can reasonably be ignored in making
calculations.

2. Methods

2.1 Population allele frequencies

Population allele frequencies are from 15 Identifiler loci in Thai [7], Chinese [8], Caucasian [9], African-American [9],
Japanese [10], Indian [8], Vietnamese [11], Korean [11], African [12, 13].

2.2 LR computation

Kinship LR computations are performed using the Symbolic Kinship [14] module of the author’s DNA-VIEW software.
The module also includes a facility to create simulated identification examples (http://dna-view.com/simulate.htm), used
for several of the examples herein. Simulations used Thai allele frequencies [7].

2.3 Racial distances

For present purposes “race” simply means a population that has been isolated — i.e. endogamous — for a period of time
and whose allele frequencies have therefore drifted compared to other populations. Allele frequency differences between
races provide a possible way to assign individuals to race [15,16,17]. They also represent a possible pitfall when deciding
on the confidence of a putative identification, because calculating with the wrong reference population creates a bias
toward false confidence in the certainty of an identification. | therefore define “racial distance” as the typical ratio by
which a DNA profile randomly selected from race r is expected to be more probable in race r than in race s. This is a
useful statistic for evaluating the suitability of using a few reference races as proxies.

Racial distance estimates are calculated [15,16,17] from available population samples [7,8,9,10,11,12,13] as follows.
Let the indices r, I, and a range over races, loci, and alleles within a locus. Consider the probability q(r,l,a) of finding
allele a at locus | in race r. Assuming the existence of allele population data for r, a collection of numbers c(r,l,a), the
numbers of times the allele was counted in a population sample, a plausible estimate (especially for length
polymorphisms) of g is the sample frequency;

q(r,L,a)=c(r,l,a)/¥ , c(r,1,a).
Also, define “extended-sample” frequencies g’ based on extending the sample by any one allele:

q’(r,1,a)=(1+c(r,1,8))/(1+Y, c(r,l,a)).

If a profile E is simulated from population r by Monte Carlo selection from c(r,1,a) then Lg(r,s)=] [, ¢ a(r.1,a)/q’(s,1,a)
is the likelihood ratio favoring r over population s as the origin of E. (Extended-sample frequencies in the denominator
compensate for acertainment bias from using the numerator population data to choose a profile [15].) The “typical” (that
is, expected in the sense of geometric mean) racial discrimination likelihood ratio from a full profile with two alleles per
locus is then [15]

D(r, s) = [T, [a(r.1,a)/q’(s,1,@)]2""®.

D(r, s) can be calculated for any pair of races for which allele population data exists, and is a directed distance measure
between the two races that is natural in a forensic context because it measures the expected error in using the wrong
reference population for computing a random match probability.

By the Central Limit Theorem the distribution of log L is nearly normal if the number of loci is large. Comparison of
moments with Monte Carlo samples of 100,000 profiles confirms that the deviations from normality, with 15 locus
profiles, are small. Kurtosis and skew are 3.3 and -1/6, versus 3 and 0 for a normal distribution.
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3. Discussion

3.1 Framework

A simplified example illustrates the Bayesian framework that | assume herein. Suppose v+1 people are lost including
a person Victor. A body V turns up. Without saying anything more the probability is 1/(v+1) —i.e. the prior odds are 1:v
meaning 1/v — that the body is Victor. Various evidence, such as DNA and the size and location of the body, combine
to give a likelihood ratio of L supporting the proposition that the body is Victor rather than anyone else. Bayes’ Theorem,
formulated in terms of odds, says that

posterior odds = (prior odds)-(likelihood ratio), Q)

so the posterior odds are L/v that V is Victor. Since probability=odds/(odds+1), the posterior probability is very nearly
1-v/L so long as (as will be true in situations of interest) L is much larger than v. Each declared identification has some
(small) probability v/L to be a mistake; v/L can also be interpreted as an expected (in the statistical sense) number of
misidentifications in declaring that VV=Victor.

Perhaps we have in mind a probabilistic budget — no doubt less than 1 — for the total number of expected errors to be
accumulated over all declared identifications. Apportioning that budget among individual identifications suggests, as
a baseline policy for declaring each identification, to insist on a stringent standard that

expected number of misidentifications per identification = v/L<e 2

for some small e such as e=1/10000. The simplest policy is to keep the same e for all victims, but it may be judicious
to make exceptions occasionally while keeping an eye on the bottom line.

If L comes from several independent pieces of evidence, such as location found (geography), physical attributes, and
DNA, then it can be expressed as a product of the likelihood ratios for each different piece of evidence:

L = (geographical LR)-(physical LR)-(DNA LR). ?3)

Substituting (3) into (1) and multiplying left to right (instead of multiplying all the likelihood ratio factors together first
as in (3)) corresponds to the idea of climbing a ladder of evidence wherein each rung represents the posterior odds
relative to the evidence below it, and at the same time is prior odds relative to the next evidence. That is,

posterior-to-geography odds = (prior odds)-(geographical LR) and 4
prior-to-physical odds=posterior-to-geography odds;
posterior-to-geography-and-physical odds = (prior-to-physical odds)-(physical LR)
etc.
Effective number of victims

Suppose v+1=10000 are missing in Thailand, 500 of them are missing from some particular seaside village SV, and
assume that all 500 of these plus 10% of the 400 missing from a nearby village to the south will wash up near SV. If
Kanya is missing from SV, what are the odds that a random body V is Kanya?

Geographical LR = X/Y where
X =Pr(V appears near SV | V=Kanya) = 1

Y = Pr(V appears near SV | V=Kanya) = (499/v)+(400-10%/v)=539/v since there are v victims in Thailand who are not
Kanya, and 499 victims from SV who are not Kanya. So LR=v/539 and

posterior-to-geography odds = (1/v)-v/539 = 1/539,

arather obvious and expected result. It is convenient to refer to 540 — or to 539, why split hairs? — as the effective number
of victims after consideration of geography. This number is relative to the facts that the victim of interest comes from
SV and that the body was found at SV; otherwise it would be a different number.

Related victims

Since the tsunami hit people in their homes and on vacations, it is certain that many related victims are involved. Family
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members perishing together is a typical complication of airplane crashes [3,18] — it was a conspicuous feature in sorting
out some of the identities from the 1998 Swissair 111 crash [4] near Halifax and from the post-9/11 crash in Queens of
AA587. Among the World Trade center victims there were not many who were related, and we did not systematically
consider the problems of related victims — in one instance early on only by luck was a mistaken identification between
brothers avoided.

Without related victims, the alternative identity hypotheses to consider are merely
H,: This PM profile represents missing person X,

H,: This PM profile is unrelated to X. O

When relatives X;, X,, ... are also possible victims, additional
hypotheses must be calculated separately:
H;: This PM profile is X’s relative X;. Ray Sam

The tsunami disaster scale, nature, and uncertainties require
approaching related victim problems systematically. There are
several different complications to consider.

3.2 One of related victims found Eé%l;r;alylgre?stliftyg;gr;n(’)?ne of related victims. Is the
The tsunami differs from airplane crashes in that many victims will

never be recovered at all, which brings an extra complication when there is a tentative identification for a missing victim
who has relatives that are also, and still, missing. Suppose that brothers Ray and Sam are missing, and only Ray’s
daughter J is available as a reference (Figure 1). A body, V, is found, and comparing the DNA of V and of J suggests
that they might be father and daughter (H,) — that VV might be Ray. But of course the possibility H, that V is Sam must
also be considered; otherwise the probability Pr(H,) that VV is Ray would be vastly overstated as a result of comparing

it only with the “strawman” H,.

In a typical situation there are prior odds Odds(Ray) that the body is Ray and let’s assume Odds(Ray)=0dds(Sam)=1/v,
v+1 being the effective number of victims. Let L(Ray, 0) be the likelihood ratio by which the DNA evidence favors Ray
as the identity of V rather than an unrelated identity. Then if there were no Sam to consider, the posterior odds that V
is Ray would be

Odds(V=Ray | DNA, no Sam) = L(Ray, 0)/v. 5)

In view of the existence of Sam however, the posterior odds that V=Ray are different, and, from equation (14)
(Appendix) — are expressed in a simple way as a combination of L(Ray, 0) and L(Sam, 0):

Odds(V=Ray | DNA) = L(Ray,0)/[L(Sam,0)+v]. (6)

Comparing (6) and (5) reveals the elegant rule that the possibility that the body is Sam rather than Ray is accounted for
by imagining L(Sam,0) additional effective victims.

For example L(Ray,0)=600,000, L(Sam, 0)=5400, and v=600. Then if Sam were neglected the odds, from (5), that
V=Ray would be 1000:1, but taking Sam into account per (6) this tenfold smaller, 100:1. The expected number of
misidentifications, per (2), is correspondingly ten times larger.

3.3 Multiple related victims found

When several bodies are found that are suspected of being members of the same family (Table 1.vw) and are to be
identified with reference to other, living, family members, a seemingly attractive plan is to assign the identities one at
a time and let each victim identity once established participate in the identification of the subsequent bodies [3]. A
serious objection to this serial approach is that it may squander a lot of the potential power of the evidence by failing
to utilize the DNA profile of each victim as evidence to identify the other. As an extreme example, imagine a father and
daughter as the only two related victims of a small airplane crash. The two of them can probably be picked out and
therefore identified from their DNA similarity even if no reference relatives are available, so simultaneous consideration
of their types is almost infinitely better than serial identification in this case. In general, the serial method misstates and
tends to understate the true value of the evidence. It is preferable to consider all the identifications simultaneously and
thereby use the fact that each dead body’s identity is supported by its DNA similarity to the other dead bodies.
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Example

Hypothesis H;, i= VW v w S 0
V=Sue, V=Sue, V unrelated, V&W sibs V, W, Fall
W=Joe W unrelated W=Joe but not of F unrelated
X
ol om  om oW oW
L(i, 0), LR favoring H; over 3,867,000 96.1 125.4 7406 1

unrelated, H,

correct analysis — simultaneous consideration of all data to evaluate both identities

p; = prior likelihood" 1 19 19 2" 359
w; = posterior likelihood® 3,867,000 1826 2382 14812 359
W, = posterior probability* 99.5% 0.05% 0.06% 0.4% 0.01%

incorrect analysis — identify victims serially using only presumably known identities at each stage

p; = prior likelihood® 19 ) _ 3618
w; = posterior likelihood" 1826 Evaluation of V=Sue (using 361

) o reference F, ignoring W)
W, = posterior probability* 83.5% 16.5%
p; = prior likelihood? 1 19
Wi = pOSteI’ior |ike|ih00dT 3,867,000 1826 Evaluation of W=Joe assuming
W, = posterior probability* 99.95% 0.05% (?1) V=Sue

* Prior probabilities — (1/20)(1/20), (19/20)(1/20) etc. assuming 20 missing children of each sex — are each multiplied
by 400 for convenient comparison.

** assuming 2 other missing brother-sister pairs

T w=L(i,0)xp;.

T WEw=Yw,.

a prior probabilities of 1/20, 19/20 scaled by factor of 19-20 for ease of comparison.

8 The difference between 361 here and 359 above comes from ignoring H..

& prior probabilities of 1/20, 19/20 scaled by factor of 20 for ease of comparison.

Table 1 Hypotheses to consider in identifying bodies of putative siblings. One or both of the two bodies, V and W, may
represent missing children Sue and Joe of the typed reference father F.

Table 1 shows a realistic situation where simultaneous consideration of the identities of two victims is important. Two
bodies V and W may be the missing daughter and son of the living reference F (hypothesis H,,; Table 1.vw), and in
addition there are at least four other possibilities (Table 1) to consider.

The general method of attack for these problem is to compute and compare the likelihoods L; of the DNA conditional
upon each of the hypothetical pedigrees H;, ie{vw,v,w,s,0}.

L; = Prob(DNA as observed | H)).
The ratio L(i,k)=L;/L, is then the likelihood ratio by which the DNA supports H; over H,.

Note that L(i,k) can equally be expressed as L(i, 0)/L(k, 0). Therefore, and since likelihoods are never used except in
ratios, there is no harm in identifying the likelihood ratios {L (i, 0)} as the likelihoods {L;}, and it is convenient to do so.
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Theory — simultaneous and serial identifications

The likelihood ratio L supporting Table 1.vw — identification of both VV and W — is at least the ratio L,,,,=min,{L,,/L}
by which this explanation exceeds any other, i.e. exceeds whatever is in second place. However, if the second-best
explanation is inherently implausible then L, is needlessly conservative. The accurate expression for L would involve
some weighted average of the L; in the denominator, the weights depending on the respective prior probabilities of the
various alternatives H,. Since therefore consideration of prior probabilities is unavoidable, we may as well use them to
simply calculate the posterior probability of each hypothesis using Bayes’ Theorem. The tableau arrangement of Table
1 illustrates the calculation: Assuming that relative prior probabilities (“likelihoods”) are given, multiply by the
corresponding genetic likelihoods L; to obtain the posterior likelihoods. These in turn are converted to posterior
probabilities by scaling them to sum to 100%. Under the given assumptions it is thus seen to be 99.5% that V is Sue and
W is Joe. (The identity of either body alone is slightly higher.)

Consider by contrast how the serial approach would work in this case. If we choose to identify V first, then we compare
the hypothesis H, (that \V=Sue) with H, (V#Sue), as shown in Table 1. The conclusion that V=Sue is a modest 83.5%,
much weaker than the actual value of the evidence. Moreover, to proceed to the next step, using the “established” identity
of V to identify W, requires an illogical leap from 83.5% to 100%. Assume that leap is made. Then identifying W
amounts to comparing the hypotheses H,,, (V=Sue and W=Joe) with H, (V=Sue, W unrelated). The resulting confidence
of 99.95% is of course an exaggeration, mainly because it rests on an illogical leap, partly because the best alternative
explanation Hy (V & W siblings unrelated to F) is overlooked by the serial method.

3.4 Appropriate reference population

Thai 38%
US and European 57%
Chinese 2%

Japanese 1%

Arab 0.7%
Malay 0.3%
African 0.3%
Indian 0.2%
Korean 0.1%
Vietnamese 0.1%

Table 2 Approximate victim proportions

Those who were killed in Thailand by the tsunami were about equally Caucasians and Thai, with many other racial
groups represented in small proportions (Table 2, derived from http://missingpersons.or.th/index.en.html). An obvious
question of practical importance: In making probability calculations is it reasonable to ignore completely those
populations are only scantly represented? Practically speaking some sort of compromise is inevitable; just as is true in
the forensic setting it is always impossible to characterize, let alone to obtain, the precisely appropriate reference
population sample.

This section discusses the method and the mathematics to justify considering only the two major constituent victim races.
Analysis for direct id

Suppose a direct match between a body V and some personal effect belonging to a victim Victor. The likelihood ratio
(known as “matching odds” in this context) between the hypotheses:

H,: V is Victor
H,: V is unrelated to Victor

is then L=1/Pr(M), where M is defined as the event that the DNA profile of a randomly selected unrelated body would
match that of Victor. The criterion (2) for declaring an identification takes the form
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Pr(M)<e@, where the threshold probability =0 (v)=e/v )
and the corresponding contribution to the expected number of misidentifications is Pr(M)v.

The probability to see any particular DNA profile at random varies from population to population. Therefore Pr(M) is
a weighted average

Pr(M) =Y wpP,, where ¥, w,=1 (8)

of the probabilities P,=Pr(M]|race=r) from each constituent victim population. The weights w, may be the proportions
with which each constituent race is represented among the victims — e.g. if subscripts T and C correspond to Thai and
Caucasian, wy=w=%2 — but in principle w, may also vary depending on the circumstances and body appearance in a
particular case, i.e. w, is the prior likelihood, based on any information other than DNA, that the body is of race r.
Therefore it would not be appropriate simply to use average allele frequencies such as might be compiled from the victim
profiles.

For the World Trade Center identifications [5], instead of (7) we adopted the more stringent condition
P.<@ for eachr. 9)

Particularly in dealing with tsunami identifications (9) offers two advantages. One, it avoids the need to decide the
appropriate weights {w,}. Two, it is likely to be sufficiently conservative to compensate for the sin of not making
calculations for some races that are in fact represented. That is, if (9) is satisfied for the main populations, probably (7)
is satisfied. If the vast preponderance of the victims are either Thai or Caucasian, it is not far wrong to make calculations
just for those two.

An example will illustrate the reason. Suppose w, =%/, is the prior probability that a given victim is Japanese, and
suppose that P; =10, P.=10"", P,=10"* — perhaps because V is Japanese. Then by (8), Pr(M) = 10*/2 + 10°"'/2
+107%%/100 =~ 0.51-10°*, so Pr(M)<P;. Therefore if (9) holds, so does (7) in this case.

In order to investigate the error in general in ignoring minor races, suppose that (9) holds for races T and C, and suppose
for example that P =max(P+, P¢). Then the relative error in ignoring minor races is the relative difference, Pr(M)/P-1,
between P; and Pr(M). It can be written as a weighted average of the relative errors that would be incurred by
substituting P; for each of the P,, r=T, C, 3, 4, ...:

Pr(M)/P;-1 = Wo(Po/Py 1)+ Wy(Po/Py- 1)+, (P /P;- 1)+... . (10)

If this expression is non-positive, it is harmless to ignore the minor races for calculation. If it is positive, then it is the
relative margin by which P; must be less than © in order to achieve the target expected misidentification contribution
despite ignoring minor race calculations. The first term on the right is non-positive, and although the proper choice of
weights w; may be case-specific, at least from the census data w. is by far the largest of the coefficients. The next term
is positive only if P,>P. (an obvious prerequisite for ignoring race 3 to be a mistake). To analyze the formula further it
is helpful to understand the behavior of P,/P,. First, note that it is the likelihood ratio supporting race r over race s as the
origin of the profile. Therefore usually P,/P;>1 when the profile actually comes from population r. Second, | have
calculated "typical” (expected in the geometric sense) values of this ratio comparing various populations among various
populations of interest (Table 3).

Chinese Thai Japanese Indian Caucasian [African-Am |Mozambican

Chinese 1.4 (x3.5) 3.5 (x5.9) 21 (x11)  [130 (x27) [750 (x34)  |4900 (x67)
Thai 1.8 (x4.5) 8.5 (x11) 16 (x12)  |140 (x32) [920 (x33) (8000 (x72)
Japanese 2.5(x5.3) [3.8(x6.1) 14 (x9) 100 (x22) |790 (x33)  |1900 (x45)
Indian 18 (x16)  [8.5 (x11) 23 (x19) 16 (x15) [180(x27) 480 (x45)
Caucasian 220 (x32) |98 (x20) 380 (x42) 29 (x13) 48 (x13) 400 (x32)
African-Am |1300 (x63)|1900 (x82)  |6900 (x150) [570 (x56) |84 (x39) 1.9 (x6.1)
Mozambican |9400 (x84)|18000 (x120)[23000 (x170)|2000 (x71)|980 (x67) (3.2 (x5.4)

Table 3 Typical likelihood ratio between races.
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D(r, s) supporting the true origin (r=row) of a DNA profile, versus an alternative origin (s=column). Factors in
parentheses are the calculated standard deviation. Example: the Japanese/Thai notation 3.8 (x6.1) means that 68% of
Japanese profiles would be between 3.8x%6.1 and 3.8+6.1 times rarer among Thai than among Japanese.

Inter alia these data tend to refute the canard that “Forensic STR markers are very poorly suited to the task of describing
ancestry [19].” DNA forensics has advanced considerably in the eight years since the research [15] that the quoted
statement can be traced back to [20].

Note from Table 3 that the East Asian allele frequencies are very similar between ethnicities (including Korean and
Vietnamese, not shown). Therefore let’s group all the East Asian populations other than Thai into a single category with
r=3, and for the moment think of r=4 as a mixture of the remaining populations. (10) is thus truncated at three terms.

If the victim race is 3, East Asian — think Japanese for illustration — then typically Py is only a few (e.g. D(3,T)=3.8)
times larger than P+, but many times larger than P (D(3,C)=100). Therefore we have P./P;=D(3, T)/D(3, C) = 3.8/100
—hence (P/P; -1) is typically not much different from -1 and similar considerations show even more strongly that the
last term, w,(P,/P;-1), is very unlikely to be positive. Therefore the right hand side of (10) is about -w + w,P,/P; or
less, which is safely negative provided that

Py/Pr<w/ws. (11)

Now, the right side of (11) is about 20 to judge from Table 2, and the typical value of P,/P; is D(3,T) — quite a lot
smaller according to Table 3 given the assumption that the victim is East Asian. Therefore (11) probably holds, so not
calculating P, is unlikely to be a mistake even when it corresponds to the victim’s true race. From simulations, this back-
of-envelope estimate is correct about 90% of the time. In 10% of those cases where 3 is the race of origin, (7) is positive
either because P,/P is abnormally large or because P./P+ is nearly 1, but both of these circumstances are very unlikely
unless P is particulary small [analysis of simulation data, not shown].

The situation, then, is this: When P+ is so large that (9) is barely satisfied, then (10) is negative, which implies (7), i.e.
there is no harm in ignoring P,. When (10) is positive (about 10% among the times that a simulated victim is actually
East Asian), it is because all the probabilities P; are so small that Pr(M)<@ anyway.

On the infrequent occasions that P, > P > P, again the frequencies are almost certainly all very small.

The same argument easily applies to populations that are not very different from European Caucasian, such as Finns,
Arabs, U.S. Hispanic, and Indians. If the prior probability at which the race is represented as a possible identity for the
victim is small compared to the “racial distance” (in the sense of Table 3) from a reference race (viz formula 11), then
there is little need to bother with a calculation for that population.

The argument may be difficult to apply for those populations that are quite distant from both of the main populations
—e.g. African and African-American. Fortunately these seem to be (Table 2) particulary scantily represented among the
victims, which suggests that w./w, — subscript A for African — is safely larger than P,/P.. (vide (11)). On the other hand,
the body might be in good enough condition to permit judging African skin color or features. Then w/w, is is not large.
But in that case v, the effective number of victims taking into account the body appearance, will be much decreased, so
(7) will be an easy standard to meet.

Nonetheless, it would seem stubborn to announce the identification of an African victim based on calculating only P;
and P, when African-American [9] and African [12, 13] data are readily available. A sensible suggestion is to re-check
(9) for the race of identification (or near alternative) before making an announcement.

Analysis for id by relatives

If only haplotypes are involved, or partial profiles, then the racial ratios and variations are diminished compared to Table
3, which gives more comfort to the policy of computing only for the major races. Some kinship calculations are in this
category. For example, if a body is identified through comparison with a single parent then usually only one allele per
locus participates in the likelihood ratio. On the other hand, if both parents are available as references then the ratios and
variations are as large as given by Table 3, while unfortunately the likelihood ratio itself is depressed because of large
combinatorial factors (e.g. 1/8pq instead of 1/2pq for mother-father vs direct id identification).

4. Summary
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1. To declare an identification, normally the posterior odds supporting the identification should exceed some
threshold value decided by policy, probably a policy with the expectation of no misidentifications in the entire
mass identification effort. The policy can allow exceptions but with cognizance that exceptions gradually
accumulate as accrued chances of error.

2. The “effective number of victims” v+1, or equivalently the prior odds 1/v that a given body is a particular
missing person, varies from case to case. The factors to consider include location found compared to expected,
and physical attributes observable in the body (including non-DNA expertises such as dental evidence).

3. The confounding effect of related victims is a constant concern. The emphasis in this paper and the greatest
concern is when the identification uses living relatives as references rather than direct references but the
principle is the same either way. The unknown extra possibilities diminish the confidence of a possible
identification.

When a direct reference is available for a missing person but there is no reference for a missing relatives of that
person, the situation is logically similar to the forensic situation when a suspect tries to explain away his DNA
at a crime scene by suggesting that his (untested) brother or other relative is the culprit. Therefore
recommendations 4.2 and 4.4 of the NRC report [21] on forensic DNA evidence would be appropriate.

4. When several possibly related bodies are to be identified using kin references, all reasonable combinations of
identities should be enumerated [4] and a calculation made for each combination, so that the identities are
evaluated simultaneously.

5. The threshold value for identification should be met by calculations in the principally represented races of Thai
and Caucasian, with a third calculation in the race of assignment if it is different. There is no end to possible
complications — for example the reference relatives for a certain missing person might be of various races
themselves, implying that the perfect calculation is rather complicated. All models are wrong, but some are
useful [22]. There has to be a practical end to the complications we worry about.
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Appendix

Suppose one body is found, and from the DNA there are two possible identities to consider, R and S. This situation might
arise if R and S are brothers and the identification is through comparison with relatives as discussed in the text.
Let

E be the actual DNA type observed in the body

M be the event that the body have DNA profile E

Hg mean “R is the name of the body”; prior probability Pr(Hg)= pg

Hg mean “S is the name of the body”; prior probability Pr(Hg)= ps

H, mean neither Hy nor Hg; prior probability Pr(H,)= 1-ps-ps

Pr(M) mean the probability of M prior to DNA testing.

Now, Pr(M) =Pr(Hx&M) + Pr(Hs&M) + Pr(H,&M)

= pr Pr(M[Hg) + ps Pr(M[H;) + (1-pg=ps)Pr(M|Ho). (12)
Also,
Pr(Hx&M) = Pr(M)-Pr(Hg|M), hence
Pr(Hg|M) = pg Pr(M|HR) / Pr(M) (13)
(Bayes’Theorem) and from (12) and (13),
Pr(not HelM) = [ps Pr(M|H;) + (1-pg-ps)Pr(M[Ho)] / Pr(M),

so the posterior odds Odds(HR|M)=%favoring Hk can be calculated
R

pr P(M|Hg)
PsP(M|Hs) + (1- pg — Ps)P(M[H,)

Odds(Hs|M)

= L(R,0) , where L(x,0) denotes the likelihood ratio
(Ps / PrI(L(S.0) 1) + (1- pr) / P
Pr(M|H,)/Pr(M|H,) by which the genetic evidence M favors H, over H,;
~ L(R,0) (14)
(ps / Pr)L(S.0)+1/ 0

where o; = pg / (1- pg) is the prior odds of Hg.
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